Learning financial asset-specific trading rules via deep reinforcement learning

نویسندگان

چکیده

Generating asset-specific trading signals based on the financial conditions of assets is one challenging problems in automated trading. Various asset rules are proposed experimentally different technical analysis techniques. However, these kind strategies profitable, extracting new from vast historical data to increase total return and decrease risk portfolios difficult for human experts. Recently, various deep reinforcement learning (DRL) methods employed learn each asset. In this paper, a novel DRL model with feature extraction modules proposed. The effect input representations performance models investigated DRL-based markets situations studied. work outperformed other state-of-the-art single obtained almost 12.4% more profit over best Dow Jones Index same time period.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Making Financial Trading by Recurrent Reinforcement Learning

In this paper we propose a financial trading system whose strategy is developed by means of an artificial neural network approach based on a recurrent reinforcement learning algorithm. In general terms, this kind of approach consists in specifying a trading policy based on some predetermined investor’s measure of profitability, and in setting the financial trading system while using it. In part...

متن کامل

Deep Reinforcement Learning for Pairs Trading

Reinforcement learning (RL) [1] differs from traditional supervised machine learning in the sense that it not only considers short-term consequences of actions/decisions, but also long-term outcomes. Because of recent advances in deep learning, model-free deep reinforcement learning (DRL) has proven successful in various applications, as with the success of a deep Q-network (DQN) in the Atari g...

متن کامل

FX trading via recurrent reinforcement learning

This study investigates high frequency currency trading with neural networks trained via Recurrent Reinforcement Learning (RRL). We compare the performance of single layer networks with networks having a hidden layer, and examine the impact of the fixed system parameters on performance. In general, we conclude that the trading systems may be effective, but the performance varies widely for diff...

متن کامل

Adaptive stock trading with dynamic asset allocation using reinforcement learning

Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dy...

متن کامل

Reinforcement Learning for Trading

We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2022

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2022.116523